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Abstract. The standard white dwarf (WD) cooling theory is revised when
the heat flux is propagate by thermal waves in degenerate material. Before
the relaxation time, the luminosity function is dampening oscillation and the
WD-age increase.

1. The Cattaneo Law and the Energy Transport Equation

In the WD core the degenerate electrons provide a high thermal conductivity.
But in the upper atmospheres, the matter is less and less degenerate, and the
impurities increase, therefore the thermal conductivities change monotonously.
Several researchers (e.g. Kowalski & Saumon 2004) state that the WD cool-
ing timescale contains uncertainties due to conductivity, the rôle of convection,
initial chemical composition, microscope diffusion, and other effects in WD at-
mospheres. In the degenerate material, as present in the WD core, heat can
be propagated by thermal waves. Therefore the energy transport equation and
the luminosity in WD stars change. However, in standard cooling theory the
possibility of heat propagation by waves is ignored. This simplification will be
spurious in the degenerate material because, the relaxation time (the time re-
quired to establish the heat flux when a temperature gradient is switched on) is
not negligible. Here we describe how the cooling time and the WD luminosity
change if heat waves are taken into account. The temperature gradient in the
stellar interior is given, in a good approximation, in terms of local values of
opacity κ, density ρ and energy flux F by:

dT

dr
= − 3κρF

4acT 3
(1)

This is just the Fourier-Maxwell law for energy flux due to thermal conductivity
and/or radiative diffusion:

~F (~x, t) = −k~∇T (~x, t) (2)

It is well known that the Fourier-Maxwell law leads to a parabolic equation
for T , according to which the perturbations are propagated with infinite speed
(Jou et al. 1999). The origin of the non-causal behavior found in Eq. (2) is the
assumption that the energy flux appears at the same time as the temperature
gradient is switched on. A heat flux equation leading to a hyperbolic equation
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(telegraph equation) is the Cattaneo law (Falcon 2001), which may be written
as an integral over the history of the temperature gradient:

~F (~x, t) = −k
τ

∫ t

−∞
exp

[
−(t− t′)/τ

]
· ~∇T (~x, t′)dt′ (3)

The relaxation time (τ) is, in general, very small (∼ 10−11s for the phonon-
electron interaction and ∼ 10−13s for the phonon-phonon and free electron in-
teraction, at room temperature). There are, however, situations where τ may
not be negligible in degenerate material, for example in the laboratory ∼ 10−11s,
for super fluid helium II at T= 1.2 K, and τ ∼ 102s in neutron star interiors at
T=106 K (Herrera & Falcon 1995). Notice that Eq. (3) may be written in terms
of the total luminosity as:

L =
4πRk

τ

∫ t

−∞
DT · exp

[
−(t− t′)/τ

]
dt′ (4)

where we have used ∇T ≈ DT/R ≡ (TCentral − TSurroundings)/R. On the other
hand the change in central temperature is given by the rate with which the
thermal energy of the superficial layer changes and can be written as:

L = CV
dDT

dt
≡ CV

(
dTcentral

dt
− dTsurroundings

dt

)

≈ CV
dTsurroundings

dt
(5)

where it has been supposed that the time during which the superficial layer
radiate is much smaller than the Kelvin-Helmholtz time. Eqs. (4) and (5) then
give:

dDT

dt
=

1

ττd

{∫ t

0
DT (t′) exp

[
−(t− t′)/τ

]
dt′ + χ · exp(−t/τ)

}

(6)

where τd is the time-scale of thermal adjustment, in other words the time it
takes for a thermal fluctuation to travel the WD radius, which is given as:

τd ≡ kρ2d2cp
16acT 3

; χ ≡
∫ 0

−∞
DT (t′) exp (t′/τ)dt′ ≈ τ ·DT (0) (7)

Taking Laplace Transformations of both sides and some elementary algebra, one
obtains:

DT (t) = DT (0) · exp(x)
{

cos(wx) − sin(wx)

w

[

1 +
2χ

ξ ·DT (0)

]}

(8)

with

x ≡ t/2τ ; α ≡ ω2 + 1 ≡ 4τ

τd
(9)

Then feeding back Eq. (6) into Eq. (5) we obtain:

L = [4πRkDT (0) exp (−t/τd)] · f(x, α) ≡ LO · f(x, α) (10)
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where

f(x, α) =
1

α
·
[

(4 + α) · cos(ωx) − (4 − α)

ω
· sin(ωx)

]

exp

[
x

2
(α− 2)

]

(11)

The last term in Eq. (10) defines the standard luminosity (LO) in the Maxwell
Fourier regime (when the relaxation time is negligible). This equation connects
the standard luminosity and the ”true” luminosity before thermal relaxation (in
the presence of heat waves).

2. The Cooling Time of White Dwarfs

The influence and importance of the mixing-length theory of convection in the
study and calculation of atmosphere models for WD have been broadly re-
ported. The simple radiative model (simple cooling model) ignores convection
completely, which is a serious omission. If the WD core is degenerate (or with
super fluid helium layers) then the relaxation time cannot be negligible. In this
case the WD contains layers with quasi periodic luminosity variation while the
times are less than relaxation time. Using the convection theory for the energy
transport one finds in the Cattaneo regime that the luminosity has the form of
Eq. (10). We assume hydrostatic equilibrium and the Cattaneo law in the energy
transport equation for the temperature, in terms of F or in terms of luminosity,
as:

dT

dr
= − 3

4ac
· κρ
T 3

·
(

τ
∂F

∂t
+ F

)

or
dT

dP
=

3κ

64πσ
· 1

GMT 3
·
(

τ
∂L

∂t
+ L

)

(12)

Notice that if τ ≈ 0 the relations (3) and (12) are the ”classical” equation for
the transport of energy in the stellar interior. The presence of a sub-envelope
or surface convection zone can highly affect the WD cooling rate and its age, as
will be seen now. According to Eq. (10) and Eq. (12) then:

T 3−j · P−i ∂T

∂P
=

3κ0

64πσ

(

L(d)/GM
)

·
[(

1 − τ

τd

)

· f(x, α) + τ
∂f(x, α)

∂t

]

(13)

Now we use the Kramers opacity, and to simplify matters, we assume a discontin-
uous transition from degeneracy to non-degeneracy at a certain point (subscript
0), yielding:

T0
∼= ϑ2/7

(

L(d)/LS

)2/5
(M/MS)−2/5

[(

1 − τ

τd

)

· f(x, α) + τ
∂f(x, α)

∂t

]2/7

(14)

Where T0 is written in term of the solar mass (MS) and luminosity (LS) we get:

ϑ ≡ Bc−3
1 <−2(LS/L

(d))(M/MS) (15)

The energy equation allows the luminosity to be written as:

−L ≈ cυ
∂T0

∂t
M (16)
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Feeding back Eq. (14) and Eq. (10) into Eq. (16), we obtain the life time or the
cooling time (τV ):

∫ τV

0

�

1 +
τ

τd
+

τ

f(x, α)
· ∂f(x, α)

∂t

�−1

dt =
2

5

�
MS

LS

�

cυϑT
− 5

2 (17)

Obviously when τ ≈ 0 we obtain the very well known (Falcon 2001) WD cooling

time relation (τ
(d)
V ) without heat waves. In general, if heat waves exist, then the

cooling time increases. Indeed, the general solution of Eq. (17) is:

2A1τv + 4A2τ · ln
�
�
�
�−

6

ω(α+ 6)
sin(ωx) + cos(ωx)

�
�
�
� = τ

(d)
V (18)

where A1 and A2 are functions of τ and τd.

A1 ≡
α2 + 9α+ 8

α(α2 + 11α+ 24)
; A2 ≡

α+ 8

α(α2 + 11α + 24)
(19)

It is easy to see that the non-linear term in left part of Eq. (18) is restrained.
Also notice that the α parameter, by definition, is always positive.

3. Conclusion

The existence of a layer of degenerate fluid in WD interiors (in which the re-
laxation time could be as long as hundreds seconds) facilitates the propagation
of heat waves. Eq. (10) shows that the luminosity depends on the previous
history of the temperature gradient and the envelope composition. This result
opens new possibilities not foreseen in the recent studies of fast cooling of white
dwarfs (Prada Moroni & Straniero 2003), based on the Maxwell-Fourier law.
In the coolest WDs, where the core is crystallized, Eq. (18) suggests that the
relaxation time increases and the propagation of heat waves must be considered
in the later phases of WD cooling. Notice that the relaxation time is another
uncertainty, but could be estimated through ZZ Ceti light curves (Falcon 2003).
The ages of the coolest WDs are very sensitive to luminosity and this can change
the results for the oldest stellar ages and the Galactic disk. In the special case

of τ ≈ τd, the same as α = 4 (critical case), the cooling time τV ∼= 2.8τ
(d)
V ;

indicate that the oldest WD, if the causal propagation of heat is considered, will
be two or three times older than suggested by the usual cooling time, based on
the Maxwell-Fourier Law.
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