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(1) Departamento de Matemática, Facultad de Ciencias y Tecnologı́a, Universidad de Carabobo. Venezuela.
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Abstract
In this work a new family of Newton-Halley type methods for solving nonlinear equations is presented. the dynamics
of the Newton-Halley family is analyzed for the class of quadratic polynomials and the convergence is established. We
find the fixed and critical points. The stable and unstable behaviors are studied. The parameter space associated with
the family is studied and finally, some dynamical planes that show different aspects of the dynamics of this family are
presented.

Keywords: Newton’s method, Halley’s method, order of convergence, nonlinear equations, dynamic, quadratic polynomials, Newton-
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1 Introduction

Iterative methods are usually necessary for solving scalar nonlinear equations. Several good methods exist in the
literature: Newton, Halley and Chebyshev methods among others, see ([1]-[3]). The study of the dynamics of various
methods was also done, see [4] for example.
In this paper, we give a new family of Newton-Halley type methods for solving scalar nonlinear equations. Here the
author establishes the conjugacy class and when this family is applied to the class of quadratic polynomials, fixed and
critical points of this family are obtained. Dynamical planes for different values of the parameter A selected from the
parameter space are presented. To conclude this section, some preliminary basics are presented. Then, in section 2
the mentioned family and their convergence is presented. Subsequently, in section 3, results on the dynamics of the
Newton-Halley family, with an emphasis on the stability of fixed points for then use the parameter space and thus
represent the dynamic planes for different values of the parameter A. Finally, the concluding remarks are presented.

1.1 Basic preliminaries
We now recall some preliminaries of complex dynamics (see [4], [13] and [51]) that we use in this work.

Given a rational function R : Ĉ→ Ĉ, where Ĉ is the Riemann sphere

Definition 1.1. For z ∈ Ĉ we define its orbit as the set orb(z) =
{

z,R(z),R2(z), · · · ,Rn(z), · · ·
}

.
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Definition 1.2. A periodic point z0 of period m > 1 is a point such that Rm(z0) = z0 y Rk(z0) ̸= z0, for k < m.

Definition 1.3. A pre-periodic point is a point z0 that is not periodic but exist a k > 0 such that Rk is periodic.

Definition 1.4. A point z0 is a fixed point of R if R(z0) = z0.

Definition 1.5. A critical point zcr is a point such that R′(zcr) = 0.

Definition 1.6. A fixed point z0 is called attractor if |R′(z0)|< 1, repulsive if |R′(z0)|> 1, and parabolic or neutral if
|R′(z0)|= 1. If |R′(z0)|= 0 then the fixed point is called superattractor. A superattractor fixed point is also a critical
point.

Definition 1.7. A fixed point z0 that is not associated to the roots of the function f (z) is called strange fixed point.

Definition 1.8. The basin of attraction of a attractor α ∈ Ĉ is defined as the set of starting points whose orbits tend
to α .

2 Newton-Halley type methods and their Convergence

In this section we present the new family and its convergence. We recall that a sequence {xn}n≥0 converges to r
with order of convergence p if there exists a K(r)> 0 such that

lim
n→∞

|xn+1 − r|
|xn − r|p

= K(r)

and the error equation is
en+1 = K(r)en +O(en+1

n )

where en = xn − r and K(r) is the asymptotic constant error (see).
In 1993 Hernández and Salanova [52] developed a family of Chebyshev-Halley type methods. Here, we present an
uni-parametric family that allows us to study the evolution of the dynamics of the Newton-Halley family given by

zn+1 = zn −
f (zn)

f ′(zn)

1
1−AL f (zn)

; n = 0,1,2, · · · where L f (z) =
f (z) f ′′(z)

( f ′(z))2 (2.1)

and where parameter A is complex and L f is degree of logarithmic convexity of f (see [53]-[55]). This family includes
Newton’s method for A = 0 and Halley’s method for A = 1

2 .
To begin the study of this family, we present the convergence in the following theorem.

Theorem 2.1. Let α ∈ I be a simple root of a sufficiently differentiable function f : B → R for an open interval B.
If x0 is sufficiently close to α , then the family Newton-Halley type methods defined by (2.1) has almost second-order
convergence, and satisfies the error equation:

en+1 = (1−2A)B2e2
n +2

(
(1−3A)B3 − (2A2 −4A+1)B2

2
)

e3
n +O

(
e4

n
)

(2.2)

where en = zn −α is the error in the nth iterate and B j =
f ( j)(α)

j! , j = 1,2, · · · .

Proof. By Taylor series expansion around the simple root α in the nth iteration, we have

f (zn) = en +B2e2
n +B3e3

n +O
(
e4

n
)

f ′(zn) = 1+2B2en +3B3e2
n +4B4e3

n +O
(
e4

n
)

f ′′(zn) = 2B2en +6B3en +12B4e2
n +20B5e3

n +O
(
e4

n
)

Furthermore, it can be easily found by substituting these terms in (2.1) that

f (zn)

f ′(xn)
= en −B2e2

n +(2B2
2 −2B3)e3

n +O
(
e4

n
)

L f (xn) = 2B2en +6(B3 −B2
2)e

2
n +4(4B3

2 −7B2B3 +3B4)e3
n +O

(
e4

n
)

which gives (2.2). This proves the theorem

So, the family has order of convergence two, except for Halley’s method which has order three.
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3 Dynamical behavior of the rational function associated with Newton-Halley family

Here the author establishes the conjugacy class and the analytical expressions for the fixed and critical points
of the Newton-Halley family in terms of the parameter A. Then the study of the fixed points, critical points and
parameter space are presented. To finish this section several dynamical planes for different values of A selected from
the parameter space are shown.

3.1 Conjugacy classes
In what remains of this paper we study the dynamics of the rational map R arising from Newton-Halley family

(2.1)

R f = z− f (z)
f ′(z)

1
1−AL f (z)

; where L f (z) =
f (z) f ′′(z)

( f ′(z))2 (3.3)

applied to P2(z) = a2(z− z1)(z− z2). Let us first remember the following definition.

Definition 3.1. [56]. Let f and g be two maps from the Riemann sphere into itself. An analytic conjugacy between f
and g is an analytic diffeomorphism h from the Riemann sphere onto itself such that h◦ f = g◦h.

R f has the following property for an analytic function f

Theorem 3.1. (The Scaling Theorem). Let f (z) be an analytical function on the Riemann sphere, and let T (z) =
αz+β , α ̸= 0, be an affine map. If g(z) = f ◦T (z), then T ◦Rg ◦T−1 = R f (z). That is, R f is analytically conjugate
to Rg by T .

Proof. With the iteration function R(z), we have

Rg(T−1(z)) = T−1(z)−
g
(
T−1(z)

)
g′ (T−1(z))

1
1−ALg (T−1(z))

with Lg
(
T−1(z)

)
=

g
(
T−1(z)

)
g′′

(
T−1(z)

)
(g′ (T−1(z)))2

Since αT−1(z)+β = z, g◦T−1(z) = f (z) and
(
g◦T−1

)′
(z) = 1

α g′
(
T−1(z)

)
, we get g′

(
T−1(z)

)
= α

(
g◦T−1

)′
(z) =

α f ′(z), g′′
(
T−1(z)

)
= α2 f ′′(z). We therefore have

T ◦Rg ◦T−1(z) = T
(
Rg(T−1(z))

)
= αRg

(
T−1(z)

)
+β

= αT−1(z)−
αg

(
T−1(z)

)
g′ (T−1(z))

1

1−A
g(T−1(z))g′′(T−1(z))

(g′(T−1(z)))
2

+β = z− f (z)
f ′(z)

1

1−A f (z) f ′′(z)
( f ′(z))2

= R f (z)

Theorem 3.1 allows the study of the dynamics of the iteration function of Newton-Halley family (2.1) for the polyno-
mial P2(z) = a2(z− z1)(z− z2) by means of the study of the polynomial p(z) = (z−a)(z−b) where a ̸= b.

Definition 3.2. [10]. We say that a one-point iterative root-finding algorithm p → Tp has a universal Julia set (for
polynomials of degree d) if there exists a rational map S such that for every degree d polynomial p, J(Tp) is conjugate
by a Möbius transformation to J(S)

The following theorem establishes a universal Julia set for quadratics for our method (2.1).

Theorem 3.2. For a rational map Rp(z) given by (2.1) applied to p(z) = (z−a)(z−b),a ̸= b, Rp(z) is conjugate via
the Möbius transformation given by M(z) = z−a

z−b to

S(z) =
z2(z+1−2A)
(1−2A)z+1

(3.4)
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Proof. Let p(z) = (z−a)(z−b),a ̸= b and let M(z) = z−a
z−b with M−1(u) = bu−a

u−1 . We then have

M ◦Rp ◦M−1(z) = M
(

Rp

(
bz−a
z−1

))
=

z2(z+1−2A)
(1−2A)z+1

We observe that parameters a and b do not appear in S(z), because the Newton-Halley family complies with theorem
3.2.
The next subsections consider three specific values of A

3.1.1 A = 0: Newton’s Method
In this case S(z) = z2 and the fixed points are z = 0, z = 1 and z = ∞. As S′(z) = 2z then |S′(0)| = 0, |S′(1)| = 2

and |S′(∞)|= ∞. So, z = 0 and z = ∞ are superattractive fixed points. z = 1 is a repulsive strange fixed point.

3.1.2 A = 1
2 : Halley’s Method

If A = 1
2 then S(z) = z3 and the fixed points are z = 0, z = ±1 and z = ∞. As S′(z) = 3z2 then |S′(0)| = 0,

|S′(±1)|= 3 and |S′(∞)|= ∞. So, z = 0 and z = ∞ are superattractive fixed points. z =±1 are repulsive strange fixed
points.

3.1.3 A = 1: Newton’s method for multiple roots
If A = 1 then S =−z2 with fixed points z = 0 , z =−1 and z = ∞. As S′(z) =−2z then |S′(0)|= 0, |S′(−1)|= 2

and |S′(∞)|= ∞. So, z = 0 and z = ∞ are superattractive fixed points. z =−1 is a repulsive strange fixed point.

3.2 Study of the fixed points
The fixed points of S for S defined in (3.4) are z =−1, z = 0, z = 1 and z = ∞.

To study the stability of the fixed points, we calculate S′(z), so

S′(z) =
2z
[
(1−2A)z2 +2(A2 −A+1)z+1−2A

]
[(1−2A)z+1]2

(3.5)

It is obvious from (3.5) that z = 0 and z = ∞ are superatractive fixed points. The study of stability of the other fixed
points is now presented.
The operator S′(z) in z =−1 gives

|S′(−1)|=
∣∣∣∣A+1

A

∣∣∣∣ , (A ̸= 0) (3.6)

If we analyze this function, we obtain an horizontal asymptote in |S′(−1)|= 1 when A→±∞, and a vertical asymptote
in A = 0 (Newton’s method).
In the following result we present the stability of the fixed point z =−1.

Theorem 3.3. The strange fixed point z =−1 satisfies the following statements:

1. If Re{A}<− 1
2 , then z =−1 is an attractor and is a superattractor for A =−1.

2. If Re{A}=− 1
2 , then z =−1 is a parabolic fixed point.

3. If A ̸= 0 and Re{A}>− 1
2 , then z =−1 is a repulsive fixed point.
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Proof. From (3.6),

|S′(−1)|=
∣∣∣∣A+1

A

∣∣∣∣≤ 1 ⇒ |A+1| ≤ |A|

Let A = α + iβ be an arbitrary complex number. Then,

|A+1|2 = (α +1)2 +β 2

and
|A|2 = α2 +β 2

So
2α +1 ≤ 0 ⇒ α ≤−1

2
Therefore,

|S′(−1)| ≤ 1 ⇔ Re{A} ≤ −1
2

Finally, if A ̸= 0 and Re{A}>− 1
2 , then |S′(−1)| ≥ 1.

The operator S′(z) in z = 1 gives

|S′(1)|=
∣∣∣∣A−2
A−1

∣∣∣∣ , (A ̸= 1) (3.7)

If we analyze this function, we obtain an horizontal asymptote in |S′(1)|= 1 when A →±∞, and a vertical asymptote
in A = 1 (Newton’s method for multiple roots).
In the following result we present the stability of the fixed point z = 1.

Theorem 3.4. The strange fixed point z = 1 satisfies the following statements:

1. If Re{A}> 3
2 , then z = 1 is an attractor and it is a superattractor for A = 2.

2. If Re{A}= 3
2 , then z = 1 is a parabolic fixed point.

3. If A ̸= 1 and Re{A}< 3
2 , then z = 1 is a repulsive fixed point.

Proof. From (3.7),

|S′(1)|=
∣∣∣∣A−2
A−1

∣∣∣∣≤ 1 ⇒ |A−2| ≤ |A−1|

So
2α −3 ≥ 0 ⇒ α ≥ 3

2
Therefore,

|S′(1)| ≥ 1 ⇔ Re{A} ≥ 3
2

Finally, if A ̸= 1 and Re{A}< 3
2 , then |S′(1)| ≥ 1.

In Figure 1 the functions where are observed the regions of stability are graphed. These functions are given by

S1(−1) = min
{
|S′(−1)|,1

}
S1(1) = min

{
|S′(1)|,1

}
Zones of stability are when S1(A) = 1.
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Figure 1: Stability regions of the strange fixed points. Left: S1(−1). Right: S1(1)

3.3 Study of the critical points
Critical points of S(z) satisfy S′(z) = 0, that is, z = 0, z = ∞ and

zc1 =
A2 −A+1+

√
A4 −2A3 −A2 +2A

2A−1
(3.8)

zc2 =
A2 −A+1−

√
A4 −2A3 −A2 +2A

2A−1
(3.9)

if A ̸= 0, 1
2 ,1. Observe that zc2 =

1
zc1

and zc1 = zc2 = 1 only when A = 2. zc1 = zc2 =−1 only when A =−1. When
A = 0 or A = 1 the only one critical point is z = 0 and if A = 1

2 , z = 0 is a critical point with multiplicity two.
In Figure 2, the author represent the behavior of the fixed points and critical points for real values of A between −4
and 4. Fixed points are represented by black solid lines and this is more thick when fixed points are attractors. Critical
points zc1 and zc2 are represented by red solid line and blue dotted line respectively.

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

A

Figure 2: Dynamical Behavior of strange fixed points and critical points for −4 < A < 4

3.4 Study of parameter space
In this section the behavior of the iterative methods obtained for various values of parameter A when it is used

in the calculation of the critical points that are used as initial iteration is analyzed graphically. In this way some
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members of the family of methods presented with good or bad behavior can be identified. In this study, we use a mesh
of 1000×1000 points, a tolerance of 10−2 and a maximum of 50 iterations.
If the iteration begins with the critical point obtained by substituting the value of parameter A in the method for that
parameter value and observing the convergence to z = 0 or to z = ∞ with the established tolerance, point A of the
complex plane is represented in Figure 3 in red color. When the critical point generates iterates that do not converge,
the point A is represented in blue; other colors indicate convergence to strange fixed points. The various tonalities are
related to the speed of convergence; so, if the color is darker the method for that parameter value converges faster.
Figure 3 on the right shows a zoom to observe in more detail the behavior of the method in non-convergence zones.

Figure 3: Parameter plane associated to the critical point zc1 and zoom

3.5 Dynamical Planes
In this section the dynamic planes are represented for various methods obtained by substituting some values of

parameter A in the rational function S given in (3.4). These values of A were selected from different areas of the
parameter space studied in the previous section. In these dynamical planes the convergence to 0 appear in light blue,
in red appears the convergence to ∞, in dark blue the zones with no convergence to the roots and other colors show
the convergence to strange fixed points. The various tonalities are related to the speed of convergence; so, if the color
is darker the method converges more slowly.
Now, in Figures 4-7 various stable dynamic planes for values of A selected in the parameter space are showed.

Figure 4: Dynamical planes. Left: Newton’s method (A = 0). Second Left: A = 1
4 . Center: Halley’s method

(
A = 1

2

)
.

Second right: A = 3
4 . Right: A = 1

International Scientific Publications and Consulting Services



Communications in Numerical Analysis 2017 No.2 (2017) 157-171
http://www.ispacs.com/journals/cna/2017/cna-00322/ 164

Figure 5: Dynamical planes. Left: Newton’s method (A =− i
4 ). Second Left: A =− i

8 . Right: A = i
8 . Right: A = i

4

Figure 6: Dynamical planes. Left: A =−0.1. Right: A =−0.1+ i

Figure 7: Dynamical planes with complex parameters. Left: A = i− 1
2 . Center: A = i. Right: A = i+1.

In Figures 8-9, the dynamical planes of several members of the family with broad regions of no convergence is shown.
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Figure 8: Dynamical planes. Left: A =− 1
2 . Center: zoom in (-0.9,-0.3). Right: zoom in (0.95,1.05)

Figure 9: Dynamical planes. Left: A = 3
2 . Center: zoom in (-1.05,-0.95). Right: zoom in (0.3,0.9)

In Figures 10-11, the dynamical planes of several members of the family with regions of convergence to any of the
strange fixed points is shown.

Figure 10: Dynamical planes. Left: A =−1. Center: zoom in (-0.4,-0.2). Right: zoom in (0.9,1.1)
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Figure 11: Dynamical planes. Left: A = 2. Center: zoom in (-1.1,-0.9). Right: zoom in (0.25,0.4)

3.6 Periodic orbits
In this section we present different periodic orbits of period two and only one periodic orbit of period three for

A = 1.35. First, S(S(z)) = z is resolved, where S is give in (3.4). In Figure 12 left, dynamical plane to A = 1.35 is
presented, where the three orbits of period two can be observed. Such orbits are given by

z1 = 0.37830094+ i0.37830094 ⇒ z2 = 0.37830094− i0.37830094 ⇒ z1 = 0.37830094+ i0.37830094
z3 = 0.85+ i0.5267826876 ⇒ z4 = 0.85− i0.5267826876 ⇒ z3 = 0.85+ i0.5267826876
z5 = 1.32169906+ i1.32169906 ⇒ z6 = 1.32169906− i1.32169906 ⇒ z5 = 1.32169906+ i1.32169906

To calculate periodic orbits of period three is necessary that S(S(S(z))) = z. In this case, eight orbits can be obtained.
In Figure 12 right, dynamical plane to A = 1.35 is presented, where a orbit of period three can be observed. Such orbit
is given by

z1 = 0.75555+ i0.080826 ⇒ z2 = 1.6435− i0.5488 ⇒ z3 = 0.216577+ i0.79 ⇒ z1 = 0.75555+ i0.080826

Figure 12: Dynamical planes for A = 1.35. Left: 2-periodic orbit. Right: 3-periodic orbit.
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4 Result and discussion

In this paper we present a family of Newton-Halley type methods and then a study of the complex dynamics for
this family for the second-degree polynomial class is made. For this, the scaling theorem and the conjugation mapping
for that family were first established, then the fixed points and critical points of the obtained rational operator were
studied. We also analyzed the parameter space, selecting different values of this parameter to make the respective
dynamic planes. Thus dynamic planes of methods with stable, unstable behavior and with convergence to strange
fixed points are presented. Finally, we show the existence of periodic orbits, representing graphically all orbits of
period two and one of the eight orbits of period three. It is clear that more studies on the dynamics of this family are
necessary.
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