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1. Introduction

Is well known that nonlinear equations are in general unsolvable analytically and the
solution to these equations must be approached using iterative methods. Newton’s method is
the iterative method most used to solve nonlinear equations. It has order of convergence two
and is given by
f(xn)
£ (n)

Construction of these iterative methods when they are of third-order is by using a Gander’s
result [10]. Three of the most popular methods for a point with third-order convergence are
Chebyshev ([20],[21]), Halley [13] and Super-Halley’s methods ([12],[15]). Also, various
families of methods using weight functions that meet the hypothesis of Gander’s theorem can

be constructed. These may include Hansen-Patrick [14], Chebyshev-Halley [11] and 6 — C [2]
families of iterative methods.

Xne1 = Xn — n=012- N
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Several authors, ([1],[16],[18],[23]), have presented different constructions and geometric
interpretations of third-order methods. In this work, we establish a geometric interpretation of
methods that can be based on Gander’s theorem.

The rest of the paper is organized as follows. In section 2 Schrdder’s theorem is presented
to be used to demonstrate the extended Gander’s theorem. Then, in section 3 the main result of
this work is presented. In section 4 several examples of families with their geometric
interpretation and asymptotic error constant are reported. Finally, in section 5, numerical
comparisons are made to show the performance of some of the methods presented.

2. Gander’s Theory

2.1. Schroder’s theorem

In this section we first present Schroder’s theorem that will be useful in the sequel. We
recall that a sequence {xn}n>0 converges to a with order of convergence r if there exists a
K(a) > 0 such that

H Xn1 —al —
rI]I_TO Xpp =l K(@),
Moreover, if e, = X, — a is the error in the n — th iteration and K(a) is the asymptotic error
constant then the relation
eni1 = K(a)ef + O(eft
is the error equation.

Theorem [24] 2.1. (Schroder’s theorem ) Let the iterative method be given by the equation of
iteration Xn.1 = G(Xn), where G € C'" in a neighborhood of «, a fixed point of G, a = G(«a).
Then the sequence {x,} converge to a with order of convergence r if:
dIG(a) B . d"G(a)

Ix =0, J]=1,2,---,r-1, o + 0.

2.2. Extended Gander’s theorem
As an extension of Gander’s theorem [10] we report on the following result.

Theorem 2.2. Let a be a simple zero of f and H be any function with H(0) = 1, H(0) = % and
[HO)|< . If the iteration Xp1 = G(Xn), with G(X) = x— %H(Lf(X)) where
X

FORLOLICY
)]

il 2 "
K@ = $- H(O))[ o J ke @

Proof. For the above G(x), the hypothesis of this theorem requires that G'(a) = 1 -H(0) =0

is of third-order, then the asymptotic error constant is given by
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1
and G"(a) = ];,((a)) (H(0) — 2H(0)) = 0. Now, by Schréder’s theorem we have that the

o
method given by X,.1 = G(xn) is of third order. Furthermore
"
G"(a) = 3(1 - H(O))[ @) J T @ ®3)
@ fl
Since the asymptotic error constant is K(a) = G 3'(a) then by (3) we obtain (2). Here the
proof ends. |

It should be underlined here that by using Taylor’s expansion, Cordero, Jordan and
Torregrosa obtained in [8] an equivalent result.

3. Geometric Construction of the Gander’s Class

Following an idea of Amat, Busquier and Gutiérrez [1], we replace f(xn) by f(xn) —y in the
equation of iteration xn,1 = G(Xn) to arrive at the following result.

Theorem 3.1. Let a be a simple zero of f and H be any function with H(0) = 1, H(0) = % and
I[H(0)|< 0. The iteration Xn.1 = G(Xn), Wwith G(X) = x— :/((—X))H(Lf()()) where
X

Li(x) = f(x)f (x)
1]

, can be built from the curve defined by equation

RACON [fOn)-y]f" (xn)
f'(Xn) (f’(xn)>2

4

which meets the following three conditions of tangency:
Ly(xn) = f(xn),

2.y'(Xn) = f'(xn),

3.y"(xn) = ' (xn).

Proof. If y =0 and x = xp,1 are used in equation (4), then X,.1 = G(X,) is obtained. If in
equation (4), x is replaced by x, , then the first condition of tangency y(xn) = f(xn) is satisfied.

Now, let g(y(x)) = Lf(Xn)(l - %(X)) ) and y(xn) = f(xn), then

000D =0, g = 00, ©)
and

: _ 1 (x0)

' (50) = e L) ©®)

For the sake of simplicity, we write (4) in the following form
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T L) (K= Xa) = ~9RHEY), ™
NPW differentiate (7) twice with respect to the variable x to obtain
L) = 0 YEHEYE)) ~ IYCFIGE0NY () ®)
and
0 = —g" (Y)H@Y(X))) — 2H@Y)NIG' (Y())1* = g)G (YD) H@Yx)] ' 9)
If we consider x = X, in (8) and (9), using equations (5) and (6) as well as H(0) = 1,
H(0) = % and |[H(0)|< oo, the other two tangency conditions are obtained. H

4. A Compilation of Third-Order Families

In this section we present several examples in which the weight function H satisfies the
hypotheses of the extended Gander’s theorem, thus yielding different equations with the
structure of equation (4) that allow to construct third order methods. In the first three
examples, three families of well-known methods, are presented to solve non-linear equations
of third order when the roots are simple. Then new families, that the author believes are not in
the literature, are presented. In all presented families, X is given and n =0,1,2,---. Also
presented, are the elements of the family in which H(0) = 1. These elements have order four
for quadratic equations.

4.1. Hansen-Patrick’s family [14]

Let the weight function H be given by

H(t) = arl a+-1) where H(0) =1, H(0) = £ and H(0) = 22
® ATy ( ) 0) 0) = 3 0) 2
If we consider the curve defined by equation
X = Xp + y—/f(xn) @+1 |
f (Xn)

[fotn)-y] " xn)

o)

then by theorem 3.1 the tangency conditions are satisfied. So, the equation of iteration is
_ f(Xn) a+1

t'(xn) (a+/1-@+DLixn )

and
I

2
1-a| f f
mw2<ga[/@)}_%_#g_
f (a) f(a)
This family of third-order iterative algorithms includes, as particular cases, the following
methods

e When a = 0, we have the Ostrowski’s method [21]
f(Xn) 1

f'(xn) JI-Leoxn)

a+ Jl— (a+1)

Xn+]_ = Xn (10)

Xn+1l = Xp — (11)
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with ,
1" 1"

K@) = %[—f,(“) J -1

f(a) f(a) .
e When a = 1, corresponds to the Euler’s method (in this case H(0) = 1) [25]

f(Xn) 2
Xni1 = Xn — , 12

mEe f'(xn) (L+/TF20xm ) 12

with

"
K(a) = - @

f (a)
e If we let a —» +oo, Newton’s method (1) is obtained.
4.2. Chebyshev-Halley’s family [11]

Here the weight function H is given by )
H(t) =1+ m = H(0) = 1,H(0) = 4 and H(0) = A.
If we consider the curve defined by the equation
[f(Xn)*Y}f”(Xn)
2
_ t'oxp)

x=xn+yf,f(xn) 1+ ( n) ,

X

(Xn) ol 1-A [f(xn)y}f//z(xn)

\ Con) ) )
then by theorem 3.1 the tangency conditions are satisfied. So, the equation of iteration is
_ f(Xn) L¢Xn)
Xn+1 = Xp — f/(xn) 1 2(1—ALf(Xn)> (13)
and
1Al '@ 11"@
K(a) = 5 ’[ / J -1 5
f (o) f(a)

This family of third-order iterative algorithms includes, as particular cases, the methods
that follow. )
e A = 0, corresponds to Chebyshev’s method (where H(0) = 0) ([20],[21]),

f(Xn) 1
Xn+ == Xn - —\1+ _L (Xn) y (14)
1 £ (xn) ( 2 - )
and ,
fl/ fl/l
K(a) = %[—,(“) J .
f(a) f (a) .
eA= % corresponds to Halley’s method (in this case H(0) = 1/2) [13],
f(Xn) 1
n+1l = An — ) 1
e = f'(Xn) (1—%|—f(xn)> 1%

and



6 C. E. CADENAS

K@) = 1 [f (a)} 1@
t'(a) ° '@ .
e A =1, corresponds to Super-Halley’s method (where H(0) = 1) ([12],[15])

f(xn) ( 2—-LiXn) )
Xn+1 = Xn — : (16)
n+1 n fI(Xn) 2(1_ Lf(XI’]))

and
"
K(a) = —4— T
f (a)
e If we let A —» +oo, Newton’s method (1) is again obtained.

It should be noted that the dynamics of the Chebyshev-Halley family on quadratic
polynomials was studied in [7].

4.3. 0 — C family [2]

As before, let the weight function H be given by
H(t) = 1+_W +Ct2 = H() = 1,H((0) = L and H() =0 +2C.

For the equation
[foxn)-y]f" (xn)
2
') f(xn)-y1f" (x
(o) o Homy)f oo

, 2
ol 1-9 [f(xn)_y}f”(xn) (f (Xn)>

o)

by theorem 3.1 the Eangency conditions are satisfied. So, the equation of iteration is:

Kot = X — —TC0) (1+ L +c<Lf<xn)>2), 17)

X = Xn + y=fln) | 4,

f'(xn)

f'(xn) 2(1-0Lsxm)
and
K(q) = 1-60-2C) |:f (a) :| 1 fw(a)
@ 2 f'(a) 6 t'(a)

This family of third-order iterative algorithms includes, as particular cases, the following
methods. )
e When 0 = 0, we obtain the C —family (in this case H(0) = 2C) [9]

f(Xn)
ot = Xn = 7 (1+ FLi0xn) + C (Letxn))?), (18)
with
K(q) — 1-2C) |: f”(a) :| 1 fm(a)
(@) 2 (@) 6 ' (a)

The dynamics of C —family (18) on quadratic polynomials is studied in [5].
e When C = 0, the Chebyshev-Halley’s family (13) is obtained.

e When C = 1 0 (in this case H(0) = 1) the following family is obtained
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., f(xn) L¢Xn) 1-0) 2
Xn+]_ = Xn f/(xn) (1 + 2(1—9Lf(Xn)> + 2 (Lf(Xn)) )

f/l/
K@) = -+ =~ (@)
f(a)
The dynamics of 0-C family (17) on quadratic polynomials are reported in [4] and [6] .

and

4.4. A convex combination of the Halley and Chebyshev methods

Using a convex combination of (14) and (15) the following H function is obtained.

H(Y) = (1_’*%0 +(1-A)L+ 1) = H(O) = 1, F(0) = £ and F(0) = 2.

For 3 _
X = xq + I 1) A +(1-A) 141 [f(xn),y]f ) |
N N O O (f'xn))

‘ (f/(Xn)>2 i

then by theorem 3.1, the equation of iteration is

_ f(xn) A 1
o = ( i - A1+ 2Lix0)) ) (19)

and

1" 2 "
_e-A| f @ 1§ (@
K(a) = 4 7 — E 7 .
f (a) f ()
If A =0 Chebyshev’s method (14) is obtained. A = 1 happens to correspond to Halley’s
family (15). While when A = 2 in (19) we may invoke the following iteration equation

f(xn) 2 1
= Xn — —1-1 , 20
T ey (T3l T 2O 0

and
11

)
K(a) = —%m

4.5. A convex combination of the Newton and a Newton-Halley type methods

This is well known that Newton’s method is given by (1) and the Newton-Halley type
method [3] is given by
f(Xn) 1 )
f’(Xn) 1-BLiXn) /) °
Taking a convex combination of both, leads to

B - f(Xn) B 3 f(xn) 1
o _A<X“ f’(xn>>+(1 A)<X” '(xn) 1—BLf<X“’>’

Xne1 = Xp —
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which can be written as:

. f(Xn) 1-A
Xnet = Xn = f/(X ) (A+ 1-BL:Xn) ) '

So, H(t) —A+ 1 A = H(0) = 1 and H(0) = B(1-A). To make H(0) = L,it is
necessary that B = 2(1—A) : Then the following weight function is obtained
H(t) = A+ 20LA) T = H(0) = 1,H(0) = - and H(0) = —2(1 » (A £ 1),

If we consider the equation

—f 142
y—fCn) | p 8072
f (Xn) 21-A - [foxn)-y]f (xn)

(f’(xm)2

then by theorem 3.1, the equation of iteration is

f(x —1)2
Xnt1 = Xn — ,( n) (A+ 2R >,

X:Xn+

£ (Xn) 2(1-A) - Lixn)
and
_a-a | '@ | 117@.
" A)[f(m} 6w

If we let A = 1, we obtain the Newton’s method (1).
This family of third-order iterative algorithms includes, as particular cases, the following
methods
e A = 0, corresponds to Halley’s method (15).
e If we let A - +oo, we obtain the Chebyshev’s method (14).
o IfA = % the Super Halley’s method (16) is obtained.

4.6. A new family of Chebyshev-Halley type methods for finding simple roots of nonlinear
equations

Here We start Wlth the H weight function )
H() = = At + (3 - A)t;= H(0) = 1,H(0) = + and H(0) = 2A?,

to consider the equation

y—f(n) 1 o (2 py LIy

£ (xn) ! ? £ o))
[fxn)-y]F (xn) n
T 2

(f'om)

which eventually leads to the equation of iteration

X =Xpn+

1-a
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_ f(xn) 1
o =0~ (e (- ) ) @1)
and ,
K(a) — (1—2A2)|:f”(a):| _lf”’ﬂ A1
DT | T | T w Y

The case A =0 corresponds to Chebyshev’s method (14), while A = % corresponds to

Halley’s method (15). When A = % the following iteration equation is obtained.

f(xn) 2 1
= Xp — =(1-J2)L 22
Xt = R fI(Xn) (Z_ELf(Xn) ’ 2(1 J—) ) ). (22)
Similarly, when A = —% the following equation of iteration is obtained.
f(xn) 2 1
1= Xn— —~(1+2)L , 23
Xt =% f/(Xn) (2+~/7Lf(xn) ’ 2( +/2)Lilxn) =)
with the same
"
K(a) = —+— T
f (a)

for both values of A.

4.7. A simple parameter family of third-order methods for solving nonlinear equations

Here
. 2
H(t) = 1 H(0) = 1,H(0) = 1 and F(0) = #A=2A+1
® AT AT (0) ©0) = 3 0) .
Consider
X = Xp + y —f(Xn) 1 1

f'(xn)
n [f(xn) - y}f (Xn) [f(Xn) y}f (Xn)

o] (ou]

then the equation of iteration is
f(Xn) 1

1-A

Xnel = Xn = ' (xn) QA-ALxm)[1-G -ALxn]’
and ( 2)
1+2A-4A) T (o) J 1 f”’(a)
K =
(@) : [ ] % f@

If A=0or A= i the Halley’s method (15) is obtained. In case that A = 1+4‘/§ or
A= LS

then the following equation of iteration is obtained

f(Xn) 1
/ | (24)
0w [1= 4 L0 4 (L)’

n

K(a) = -+ L@

Xne1 = Xp —
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4.8. A new family mean of two Newton-Halley type methods for finding simple roots of
nonlinear equations

For
__1 1 . _ : _ 1 N _ 1pa2_

we consider the equation

y—f(Xn) 1 1
+ / 1 "
f (Xn) o aLfom -yt (xn) 2-@2-A) [foxn)-y]f" (xn)

(f/(Xn))2 (f/(Xn))2

to end up with the equation of iteration

X:Xn

+

_y _ _fxn) 1 1
STV (2—ALf(xn> 2T ALom )
and ,
K(a) - AC=A) [ () J 1@
YL@ ° f'@
If A=0orA =2 we have the Super-Halley’s method (16), and when A = 1 we have the
Halley’s method (15).

4.9. An A family
For 1—4A
Ht) = —L = H(0) = 1,H(0) = £ and H(0) = =2
® 1- 1t+ AP = HO) @)= © 2
we consider
— %o+ y —f(Xn) 1
n ! 2 !
f (Xn)

[fom-y]t om) | [fxn)-y]f"oxn)

2 2
(f/(Xn)) (f,(Xn))
to end up with the equation of iteration

f(Xn) 1

1-—

[N

T ) 1 L) +A L)
and 2
(4A+1) f”(a) 1 f///(a)
o af @
(@) = > [f/(a) J D@

A = 0 corresponds to Halley’s method (15), while the case of A = —% yields the equation
of iteration (24).
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4.10. An A — C family

HO = 75 At + (4 - A)t+Ct? = H(0) = 1, H(0) = £ and H(0) = 2(A? + C).

with the equation

Yy = f(xn) 1 L(do )Wm)yﬁ(m)
') | p [fom-y]t (Xn) ? @ (Xn)>

o]

) -y P(F )

+ C ,

(o)

lead to the equation of iteration

mﬂzm—fu“( - +w%—muua+c¢mmf)

X:Xn+

f’(xn) 1-AL«(X,)
and
(1-2a%-20) | f'(a) 1 (@)
K(a) =
@ ? [Vw>J 6 t(a)

If C > 0 a new family of Chebyshev-Halley type methods (21) is obtained. In case that
C-= %, then the following equation of iteration is obtained.

_ _ f(Xn) 1 1—2A2 2
Xni1 = Xn f/(xn) (1 AL (x) ( — A)L¢#(Xn) + - (Li(xn))“ |,
and
f/l/(a)
K(a) = —% .
f'(a)
In the particular case when A = = and C-= % new iterative method
f(xn) 1 1 )
Xn+ = Xn - L Xn 25
1 fkm)(l——twv + (L)) (25)

is obtained with
11

K(a) = é ff ((:))

4.11. A convex combination of two members of the Newton-Halley family

Let H be the weight function with A = B :

__ 1 1-2B 2A-1 _1L _ 1 "0 — _
H(t) = 3(AB) ((1—At) + (1-BD ) = H(0) = 1,H(0) = 5 and H(0) = A+ B - 2AB.

Consider

1 y—f(xn) 1-2B N 2A-1
2B (%) 5 [fom-y]f’ (x) g Lfom)-y]t’ (xm

(on) (on)

X:Xn
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to arrive at the equation of iteration

Yo — oy — — 1 y=TCw) [ 128, 2A-1 J
" 2(A-B) f'(xn) L 1-ALi(x,)  1-BL(x,) ’
and ,
(1-A-B+2AB) | () 1 (@)
K = - T~ -,
@ 2 [f/(oo J 6 '(a)

If A= 2 or B = I the Halley’s method (15) is obtained. In case that B = A= then the

2A-1
following equation of iteration is obtained
1 f(xn) 1, @AY )
2(2A%-2A+1) f'(xn) \ IFALC,)  2A-1-(A-D) Li(x,)
"
and K(a) = —% f - (@) :
f(a)

Xn+1l = Xp —

4.12. A bi-parametric family

. _L 1 2 _ . _ i . _
H = 1- 55 + 530 Ay B = HO = LHO) = 3 and A(0) = A+ 28.

with the equation

1 y=fem)| ;1
2A-B) £/ (xn) 2A

X:Xn+ 1

+

2a| 1 a L1 -y]f" 0m)
2
(f'om)
- 2
o [0 YT (o)

(o0

ends up with the equation of iteration

VIR () 1 2
T (1 28+ SA- ALy T ) )

+

and

7 2 1
(1-A-2B) | f (a) 1 (a)
K = - =
@7 [f’(a) J 5 t(a)

In case when B = %, then the following equation of iteration is obtained.

_ f(xn) 1 1 (1-A) 2
X =X T ) (1_ A T 2A ALGy) T2 () )

and y
K@ =11 @
(@) 6 1 (a)
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4.13. A triparametric family

For
H = B+ <=2 + (3 + A(B - 1)t+Ct2 = H(0) = L,H(0) = 4 and
H(0) = 2(1 - B)A% + 2C,
with
f B f//
K=o SO gy 1B (1 A 1)) LR Y
" 1-A L) Y]T ) (')

(fom)’
[0 -y12(F" )’

(o)

we have the equation of iteration
f _
Xni1 = Xn — ) (B + B 4 (£ +AB-1)Li(xn) + C (Lf(Xn))Z)

+

f'(xn) 1-AL«(X,)
and )
k() (1—2(1—B>A2—2c) [ t'(a) J o " (a)
/ ! )
’ f@ ] °fo
In the case whenC = @, the following equation of iteration is obtained.
_ . fxn) 1-B 1 B 1-2(1-B)A2 2
and
f///
K(a) = -+ 112
f (a)

4.14. A pentaparametric family

The pentaparametric weight function H is

4+ 2(A+1)t+ Dt*+ Et° - ! .
H(t) = H() = 1,H(0) = = and H(0) =
® 4+ 2At+Bt?+Ct3 = HO © 2 ©

If we consider the equation .

2, Er3 f(x,)—y1f
f/(xn) 4+2(A+1)r+|23r +|§r where r — [f(x,)—Y] 2(Xn)
f (Xn) 4+ 2Ar+Br<+Cr (f/(xn)>

D-A-B
—

X:Xn—

then by theorem 3.1 the tangency conditions are szatisfied. So,gthe equation of iteration is
f(xn) 4+2(A+1)Le(X,) +D(Le(x,)) +E(Li(X,))

f'(xn)  4+2ALi(x,) +B(Li(x,))? +C(Li(x,))°’

(26)

Xn+1l = Xp —

and
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" 2 "m
K(a) = 2+AzB—D|:f/(a) J _%f,ﬂ
f (a) f (a)
If D = 2+ A+ B, then the following equation of iteration is obtained.
f(xn) 4+2A+DLi(X,)+@+A+B)(Li(X,))+E(Li(x,))

Xnt1 = Xp —

f'(xn) 4+ 2AL¢(X,) +B(Li(x,))? +C(Li(x,))°’
and y
K@) = -+ 1@
(@) 5 1)

With the exception of the Hansen-Patrick’s family (10) the other families presented in this
section can be generated from (26).

5. Numerical Examples

In order to assess the advantages and precision of the numerical schemes to solve some
nonlinear scalar equations, we have applied several methods to six different examples. A
comparisons made with results of some classical methods with only a few of the methods
reported in this work. The methods compared are the following: NM: Newton’s method (1),
ChM: Chebyshev’s method (14), HM: Halley’s method (15), SHM: Super-Halley’s method
(16), OM: Ostrowski’s method (11), EM: Euler’s method (12) and five methods presented in
this paper: CM1: equation (20), CM2: equation (22), CM3: equation (23), CM4: equation (24),
and CM5: equation (25).

Here are the test functions and the approximations (x*) to the root « to be calculated.

f1(X) = eX2+7x-30 _ 1 X* =3
fo(x) = xeX? _ sin?x + 3cosx + 5 x* = —-1.20764782713091892700941675835608.. .,
f3(x) = eX — 4x2 x* = 0.7148059123627778061376222081118009...,
fa(x) = x5+ x4 +4x2 — 15 x* = 1.347428098968304981506715380714821.. .,
fs(x) = (x—1)6 -1 X* =2,
fo(x) = x° — 10 x* = 1.584893192461113485202101373391507...,

These test functions are taken from [17].

In order to evaluate the accuracy of the numerical schemes, the computational order of
convergence (COC) is computed, which is given, [26], as
cOC = In| (X, 11— X )/ (X—X*) |

In|(Xp—X%*)/ (X, _1—X*)

Table 1 summarizes a comparison of various iterative methods under the same total
number of function evaluations (TNFE=12). Thus |x, — x*| is an approximation to the absolute
error, where n=4 in all methods apart from in Newton’s method where it is six;
[fi(xn)],1 = 1,2,3,4,5,6 is the absolute value of the test function f; in x,, Digits is the number
of digits used in Maple to perform the calculations except when the Ostrowski’s method is
applied to the test function fs (Digits = 300). The computational order of convergence (COC)
is also listed in this table. Representative values of a very good, or very bad, behavior are
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highlighted in bold. In the case of the test function f1, Xo = 3.2. It can be seen that the
Super-Halley’s method diverges, the Euler’s method converges initially very slowly and CM2
is the method with the better behavior. All other methods have an acceptable behavior. In the
case of the test function f, , Xxo = —1.4. Clearly here, Euler’s method converges initially very
slowly and the Halley’s and CM3 methods exhibit a better behavior. All other methods have a
reasonably good behavior.

Table 1: Comparison of solutions by various iterative methods under the same total number of

function evaluations (TNFE=12).

[Xn — X*| |f1(Xn)| COoC [Xn — X*| [f2(Xn)| COoC
fl(X), Xo = 3.2 Digits =50 fz(X), Xo = -1.4 Digits = 90
NM | 3.4458738e -8 4.4796369% — 7 1.9963578 | 1.0034065e-36 2.0376588¢-35 | 2.0000000
ChM | 1.1164122¢ -8 1.4513359 — 7 2.9423348 | 1.9925228e-44 4.0463080e-43 | 2.9999998
HM | 2.5127358¢ - 17 3.2665565¢ — 16 3.0000839 | 1.2674286e-74 2.5738193e-73 | 3.0000000
SHM | 21.871192 1.6801564e-331 | 0.8004937 | 1.7487793¢-42 3.5513182e-41 | 3.0000013
OM | 6.5067815¢ - 19 8.4588159e — 18 | 3.2812794 | 6.282255¢-58 1.3257136e-56 | 3.0000000
EM 5.3834699¢-4 6.9754082e-3 4.7082703 | 6.9956373e-26 1.4206329e-24 | 3.0002348
CM1 | 8.9449288e - 23 1.1628407e —21 | 3.0013841 | 9.6433837¢-53 1.9583216e-51 | 2.9999999
CM2 | 8.9301538e-40 1.1609200e-38 | 3.0000058 | 2.3595619¢-48 4.7916595e-47 | 3.0000000
CM3 | 7.8614527¢ - 15 1.0219889e — 13 | 2.9248581 | 3.3509768e-68 6.8049664¢e-67 | 3.0000000
CM4 | 9.7186510e - 25 1.2634246e —23 | 2.9996207 | 6.5716416e-47 1.3345303e-45 | 3.0000000
CMS5 | 1.3953424e - 25 1.8139451e—24 | 3.0009017 | 6.6689010e-58 1.3542812¢-56 | 3.0000000
[Xn — X*| [f3(xn)] CcocC [Xn — X*| |fa(Xn)| COoC
f3(x), Xo = 0.4 | Digits = 90 f4(x), Xo = 1.0 | Digits = 90
NM | 2.6648543e-29 9.7924264e-29 | 2.0000000 | 8.2298858e-25 3.0488534e-23 | 1.9999999
ChM | 1.2112256e-5 4.4507952e-5 | 3.3624416 | 3.5682240e-19 1.3218885e-17 | 3.0015628
HM | 6.7049483e-35 2.4638387e-34 | 3.0000273 | 7.0408823e-50 2.6083737e-48 | 3.0000001
SHM | 2.8201153¢-59 1.0362957e-58 | 3.0000002 | 1.1374924e-42 4.2139681e-41 | 3.0000011
OM | 3.0785197e-50 1.1312505e-49 | 3.0000003 | 5.5000059e-76 2.0375388e-74 | 3.0000000
EM 1.0819900e-85 3.9760000e-85 | 2.9999999 | 4.0491220e-48 1.5000426e-46 | 2.9999997
CML1 | 1.4846884e-31 5.4557209e-31 | 3.0011856 | 9.2106967e-32 3.4122057-30 | 3.0001277
CM2 | 1.4168049¢-39 5.2062727e-39 | 3.0000909 | 3.0177405¢-35 1.1179558e-33 | 3.0001277
CM3 | 1.1225727 3.5761338e-7 | 0.0434761 | 0.1017240 4.2013589 3.0000314
CM4 | 5.7559417¢-33 2.1151113e-32 | 3.0005436 | 1.3231360e-33 4.9017057e-32 | 2.0381848
CM5 | 1.6194951e-21 5.9510897e-21 | 3.0230848 | 1.8459608e-29 6.8385684¢-28 | 3.0003483
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For the test function f3, xo = 0.4, and it can be seen that Chebyshev’s method converges
initially very slowly, CM3 methods converges initially very slowly to other root
(x* = —0.4077767094044803288863636626542797402987049544203192699468- - -) and
Euler’s method exhibits a better behavior. All other methods have an acceptable behavior
while highlighting the Super Halley’s method.

For the test function f4, xo = 1; it can be seen that the CM3 method converges initially
extremely slow but Ostrowski’s method shows a better behavior; all other methods have an
acceptable behavior while highlighting the very slow convergence of the Chebyshev’s method.
In the case of the test function fs, xo = 1.8; clearly Chebyshev’s method diverges, the CM3
method converges initially very slowly and the Ostrowski’s method exhibits a better behavior;
all other methods have an acceptable behavior highlighting the slow convergence of the CM5
method. Finally, for the test function fs, xo = 1.4, Chebyshev’s method converges initially
slowly and Ostrowski’s method produces a better behavior (behaves like a method of fourth
order). Here also all other methods have an acceptable behavior. It is noteworthy that in all of
these tests, Newton’s method has exhibited a good behavior.

Table 1: Comparison of solutions by various iterative methods under the same total number of
function evaluations (TNFE=12); continuation.

[Xn — X*| |f5(Xn)| COoC [Xn — X*| [fs (Xn)| COC
f5(X), Xo = 1.8 | Digits = 90 f6(X), Xo = 1.4 | Digits = 300
NM | 1.6215643¢-15 9.7293858e-15 | 1.9999716 3.2578482e-38 1.0277816e-36 | 2.0000000

ChM | 6.9986323e11 1.1751115e71 | -0.9800589e-2 | 7.2524521e-38 2.2879940e-36 | 3.0000076

HM | 9.1431097¢-37 5.4858658e-36 | 3.0000050 2.5366069e-62 8.0024538e-61 3.0000000

SHM | 4.7722758e-31 2.8633655e-30 | 3.0000397 9.8433588e-61 3.1053698e-59 3.0000000

OM | 1.7564404e-71 1.0538642e-70 | 2.7492540 9.5635873e-236 | 3.0171078e-234 | 4.0000000

EM 1.2304430e-38 7.3826580e-38 | 2.9999958 2.1586167e-65 6.8099753e-64 3.0000000
CM1 | 7.7954209e-22 4.6772525e-21 | 2.9970332 2.0932788e-51 6.6038483-50 3.0000001
CM2 | 1.0520471e-22 6.3122824e-22 | 3.0015009 8.3223813e-55 2.6255338e-53 3.0000002

CM3 | 2.1792112e-5 1.3074554e-4 | 3.4928718 3.4222357e-46 1.0796708e44 3.0000021

CM4 | 6.1360087¢-18 3.6816052e-17 | 3.0058168 1.2671070e-54 3.9974522e-53 3.0000002

CM5 | 4.0788264e-11 2.4472958e-10 | 2.5854025 2.7793769e-47 8.7683412e-46 3.0000029

6. Conclusions

In this paper, the extended Gander’s theorem and an outcome related to geometric
interpretation of the iterative methods obtained therefrom are presented. The procedure
summarize as: for any weight H function that meets the hypothesis Gander’s theorem, it is
possible to obtain immediately the asymptotic error constant together with a pertaining
geometric interpretation. Different families and methods, both new and classic, are presented.
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It is clear that a further study is needed for the new families derived in this paper. Particularly
for those related to the dynamic behavior in the sphere of Riemann. A study, similar to the one
conducted in this work, can also be performed for different families and / or methods, such as
those reported in [6].
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