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Abstract. In this paper we give some geometric constructions of
variations of Newton’s method, based on ideas of Schröder, for the case
that roots are multiple. A straight line and a polynomial are used to
construct the iteration equation when the multiplicity of the root is known.
In the case that the multiplicity is unknown another straight line and a
rational function are used. Representative figures of an example are given.
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1. INTRODUCTION

Iterative methods are usually necessary for solving nonlinear equations. Several good
methods exist in the literature among which are the Newton, Halley and Chebyshev
methods ([8], [9] and [12]). In previous papers, geometric constructions of various
methods for simple roots have been presented, for example see [1], [2], [7] and [10]. The
classical methods for calculating multiple roots of nonlinear equations include the modified
Newton’s method, Newton’s method for multiple roots (both given by Schröder [11]),
Chebyshev’s method for multiple roots by Traub [12] and Halley’s method for multiple
roots by Hansen and Patrick [3].

The author does not know of literature pertaining to geometric constructions of classical
methods for multiple roots. In this paper, we give geometric constructions of two variants
of Newton’s method for solving nonlinear equations with multiple roots.

In section 2 basic preliminaries of Newton’s method whenf has multiple roots with
multiplicity m are shown. Section 3 describes geometric constructions whenm is known
and Section 4 whenm is unknown. Conclusions are summarized in Section 5.

2. BASIC PRELIMINARIES

If f is continuously differentiable in some neighborhood of the zeroα, Newton’s
method can be obtained from the straight tangent to a curvey = f(x) at a given point

15



16 Carlos E. Cadenas R.

0.5 1 1.5 2 2.5
−1

0

1

2

3

4

5

x
0

x
1

α

FIGURE 1. First iteration of Newton’s method to solve the nonlinear
equationf(x) = (x− 1)2(x + 1) = 0, givenx0 = 2.

P (xn, f(xn)). In the equation

y = f(xn) + f ′(xn)(x− xn) (2.1)

replacex by xn+1 andy by 0 to obtain the iteration equation of Newton’s method:

xn+1 = xn − f(xn)
f ′(xn)

; with a givenx0. (2.2)

This iteration equation can also be obtained using Taylor expansion.
In Figure 1 the first iteration of Newton’s method (2.2) is displayed to calculate an

approximation to the rootα = 1 of f(x) = (x− 1)2(x + 1) (in blue color) whenx0 = 2 is
used. In this case the tangent line (2.1) (in red color) atx = 2 is y = 7x− 11. So, ify = 0
thenx1 = 11/7.

When Newton’s method is used to approximate multiple roots, this does not work or at
best, the order of convergence is reduced from quadratic to linear. To avoid this, Schröder
generates two new methods. Prior to presenting them, we need to define multiple roots and
how to obtain from a given function with multiple roots, two related functions which have
simple roots.

Definition 2.1. α is a zero off with multiplicitym > 0 if f(x) = (x− α)mg(x) where

lim
x→α

g(x) 6= 0.

In the case thatm = 1, we say thatα is a simple zero off .
If α is a zero off with multiplicity m, thenα is a simple zero ofF1(x) = m

√
f(x). α

is also a simple zero ofF2(x) = f(x)
f ′(x) .

When the multiplicitym of a rootα is greater than one, then Newton’s method (2.2) has
first order of convergence. To restore second order convergence, Newton’s method (2.2)
could be applied to the functionF1(x) = m

√
f(x). SinceF ′1(x) = 1

m [f(x)]
1−m

m we obtain

xn+1 = xn −m
f(xn)
f ′(xn)

; with a givenx0. (2.3)

which is called the modified Newton’s method due to Schröder [11].
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Whenm is unknown, if we use in (2.2) the functionF2(x) = f(x)
f ′(x) (see [11]) and its

derivativeF ′2(x) = 1 − Lf (x), whereLf (x) = f(x)f ′′(x)
[f ′(x)]2 (see [4]-[6]), the following

iteration equation is obtained

xn+1 = xn − f(xn)
f ′(xn)

1
(1− Lf (xn))

(2.4)

which is called Newton’s method for multiple roots due to Schröder [11]. In both methods
(2.3) and (2.4), second order of convergence is achieved.

3. GEOMETRIC CONSTRUCTIONS WITH m KNOWN

This section presents two geometric constructions to the modified Newton’s method.

3.1. Using straight line. Consider the straight line given by

y − f(xn) =
f ′(xn)

m
(x− xn) (3.5)

Iteration equation (2.3) can be obtained from this straight line whose slope is them-th
part of the derivative to the curve at the point whose abscissa isxn. The straight line (3.5) is
secant to the curvey = f(x). This result is stated more precisely in the following theorem.

Theorem 3.2. Let f : D ⊂ R → D be sufficiently differentiable in an open intervalD
andα a multiple zero off with multiplicity m. Then the iteration (2.3) can be built from
the curve defined by the equation (3.5) and this complies with the following two conditions:
y(xn) = f(xn) andy′(xn) = f ′(xn)

m .

Proof. When evaluatingx = xn in (3.5),y(xn) = f(xn) is obtained. On the other hand

deriving (3.5),y′ = f ′(xn)
m is obtained and thusy′(xn) = f ′(xn)

m . Finally usingy = 0 and
x = xn+1 in (3.5), we obtain (2.3). ¤

In Figure 2 the first iteration of the modified Newton’s method (2.3) is shown to calculate
an approximation to the rootα = 1 of f(x) = (x−1)2(x+1) (in blue color) whenx0 = 2
is used. In this case the secant line (3.5) in red color isy = 7

2x − 4. So, if y = 0 then
x1 = 8/7.

3.3. Using a polynomial of degreem. To obtain a curve that complies with the tangency
conditions, begin with the straight line equation

y = F1(xn) + F ′1(xn)(x− xn) (3.6)

which is tangent inx = xn to the curve whose equation isF1(x) = m
√

f(x). Substituting
the values ofF1(xn) andF ′1(xn) in (3.6) we see that

y = m
√

f(xn) +
m
√

f(xn)f ′(xn)
mf(xn)

(x− xn)

Now, we proceed to substitutey by m
√

y

m
√

y = m
√

f(xn) +
m
√

f(xn)f ′(xn)
mf(xn)

(x− xn)
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FIGURE 2. First iteration of Modified Newton’s method to solve the
nonlinear equationf(x) = (x − 1)2(x + 1) = 0, givenx0 = 2. Case:
secant liney = 7

2x− 4.

It remains to confirm that this equation satisfies the conditions of tangency given in the
following theorem:

Theorem 3.4. Let α be a multiple zero off with multiplicity m. Then the iteration (2.3)
can be built from the curve defined by the equation

y = f(xn)
(

1 +
f ′(xn)(x− xn)

mf(xn)

)m

(3.7)

and complies with the following two conditions:y(xn) = f(xn) andy′(xn) = f ′(xn)

Proof. When evaluatingx = xn in (3.7),y(xn) = f(xn) is obtained. If we replacex = xn

in

y′ = f ′(xn)
(

1 +
f ′(xn)(x− xn)

mf(xn)

)m−1

theny′(xn) = f ′(xn).
Finally usingy = 0 andx = xn+1 in (3.7) we obtain (2.3). ¤

Note that ifm ∈ N then (3.7) is a polynomial of degreem.
In Figure 3 the parabola (in red color)P1(x) = 49

12x2 − 28
3 x + 16

3 is that obtained
in the first iteration of the modified Newton’s method (2.3) when this is applied to
f(x) = (x − 1)2(x + 1) (in blue color) withx0 = 2. Observe that the intersection of
P1(x) with the axisx is in x1 = 8/7 and that the polynomialP1 is tangent tof at the point
x = 2.

4. GEOMETRIC CONSTRUCTIONS WITH m UNKNOWN

This section presents two geometric constructions of Newton’s method for multiple
roots (2.4) which does not require prior knowledge ofm.



Some Geometric Constructions of Two Variants of Newton’s Method to Solving Nonlinear Equations with Multiple Roots19

0.5 1 1.5 2 2.5
−1

0

1

2

3

4

5

x
0x

1
α

FIGURE 3. First iteration of Modified Newton’s method to solve the
nonlinear equationf(x) = (x − 1)2(x + 1) = 0, givenx0 = 2. Case:
polynomialy = 49

12x2 − 28
3 x + 16

3 .

4.1. Using straight line. The iteration equation (2.4) can be obtained from the straight
line defined by the equation

y = f(xn) + f ′(xn)[1− Lf (xn)](x− xn) (4.8)

The slope of this line is1 − Lf (xn) times the derivative of the curve at the point whose
abscissa isxn. This implies that the straight line (4.8) is secant to the curvey = f(x).
More precisely:

Theorem 4.2. Let f : D ⊂ R → D be sufficiently differentiable in an open intervalD
andα a multiple zero off with multiplicity m. Then the iteration (2.4) can be built from
the curve defined by the equation (4.8) and this complies with the following two conditions:
y(xn) = f(xn) andy′(xn) = f ′(xn)[1− Lf (xn)].

Proof. When evaluatingx = xn in (4.8) theny(xn) = f(xn) is obtained. On the other
hand deriving (4.8)y′ = f ′(xn)[1−Lf (xn)] is constant, soy′(xn) = f ′(xn)[1−Lf (xn)].
Finally usingy = 0 andx = xn+1 in (4.8), we obtain (2.4). ¤

In Figure 4 the first iteration of Newton’s method for multiple roots (2.4) is shown to
approximate the rootα = 1 of f(x) = (x − 1)2(x + 1) (in blue color) whenx0 = 2 is
used. In this case the secant line (4.8) in red color isy = 19

7 x− 17
7 in whichy = 0 implies

x1 = 17/19.

4.3. Using a rational function. To obtain a curve that complies with the tangency
conditions begin by substituting in the equation

xn+1 = xn − f(xn)
f ′(xn)

1

1− f(xn)f ′′(xn)
[f ′(xn)]2

the value ofy − f(xn) for −f(xn) andx for xn+1 (see [2]), giving

x = xn +
y − f(xn)

f ′(xn)
1

1 + (y−f(xn)f ′′(xn))
[f ′(xn)]2
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FIGURE 4. First iteration of Newton’s method for multiple roots to solve
the nonlinear equationf(x) = (x−1)2(x+1) = 0, givenx0 = 2. Case:
secant liney = 19

7 x− 17
7 .

Here the following curve is obtained

y = f(xn) +
[f ′(xn)]2(x− xn)

f ′(xn)− f ′′(xn)(x− xn)
(4.9)

It remains to confirm that this equation satisfies the conditions of tangency given in the
following:

Theorem 4.4. Let f : D ⊂ R → D sufficiently differentiable in an open intervalD
andα a multiple zero off with multiplicity m. Then the iteration (2.4) can be built from
the curve defined by the equation (4.9) which complies with the following two conditions:
y(xn) = f(xn), y′(xn) = f ′(xn) andy′′(xn) = 2f ′′(xn).

Proof. When evaluatingx = xn in (4.9),y(xn) = f(xn) is obtained. As

y′ =
[f ′(xn)]3

[f ′(xn)− f ′′(xn)(x− xn)]2

and

y′′ =
2[f ′(xn)]3f ′′(xn)

[f ′(xn)− f ′′(xn)(x− xn)]3

theny′(xn) = f ′(xn) andy′′(xn) = 2f ′′(xn). Finally, usingy = 0 andx = xn+1 in (4.9)
we obtain (2.4). ¤

In Figure 5 the first iteration of Newton’s method for multiple roots (2.4) is shown to
calculate an approximation to the rootα = 1 of f(x) = (x−1)2(x+1) (in blue color) when
x0 = 2 is used. In this case the tangent rational function (4.9) inx = 2 is y = 19x−17

27−10x ,
which is represented in red color. So, ify = 0 thenx1 = 17/19.

5. CONCLUSION

In this paper we have presented a straight line (3.5) and a curve (3.7) to obtain the
iteration equation of the modified Newton’s method (2.3) whenm ∈ N is known and (3.7)
is a polynomial of degreem.
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FIGURE 5. First iteration of Newton’s method for multiple roots to solve
the nonlinear equationf(x) = (x−1)2(x+1) = 0, givenx0 = 2. Case:
tangent rational functiony = 19x−17

27−10x .

We also presented whenm is unknown, a straight line (4.8) and an equilateral hyperbola
(4.9) to obtain the iteration equation (2.4).
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